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Traditional Numerical Methods in Geophysics

Published in 2021

Finite Element methods

Finite Difference methods

Finite Volume methods

Integral methods

Semi-analytical methods
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Traditional Numerical Methods

Limitations:

Finite Element/Difference methods:

Mesh dependent

Fine grids for better accuracy ⇒ High computational cost

Integral methods:

Design of fast and robust integration techniques

Dense matrices ⇒ High computational cost
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Why use Deep Learning for Geophysics?



Deep Learning Methods

Advantages:

Affordable computational cost (High offline, low online)

Easily parallelizable implementation

Great approximation capabilities

Exploitable big data

Exempted from the curse of dimensionality
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Deep Learning for Solving Forward and Inverse Problems



Governing PDEs in Electromagnetism
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Maxwell’s equations


∇ × H = (σ + jωϵ)E + Jimp Ampère’s law,

∇ × E = −jωµH + Mimp Faraday’s law,

∇ · (ϵE) = ρe Gauss’ law of
electricity,

∇ · (µH) = 0 Gauss’ law of
magnetism.
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Borehole Synthetic Example: Input Measurements

500 kHz
Tx1 Tx2Rx1 Rx2

0.40 m

1.8 m
Co-axial attenuation and phase difference

10 kHz
Tx Rx

12 m
Co-axial attenuation and phase difference
Geosignal
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Geophysics Synthetic Example: Output Earth Parametrization

t
du

dl

ρu

ρl

ρh

ρu ∈ [1, 103]Ω · m: Upper layer resistivity

ρh ∈ [1, 103]Ω · m: Central layer resistivity

ρl ∈ [1, 103]Ω · m: Lower layer resistivity

du ∈ [10−2, 10]m: Vertical distance to upper layer

dl ∈ [10−2, 10]m: Vertical distance to lower layer
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Geophysics Synthetic Example: Loss Function

Definitions:

F := Forward operator (Earth properties −− > Measurements)
I := Inverse operator (Measurements −− > Earth properties)
Iϕ∗ := Neural Network approx. of I

Desired loss function:

Iϕ∗ := arg min
Iϕ,ϕ∈Φ

∑
i

∥(F ◦ Iϕ)(mi) − mi∥

We approximate the full inverse function I
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Deep Neural Networks (Deep Learning) for Inverse Problems

Approximate: I ≈ Iϕ := Ak ◦ N ◦ Ak−1 ◦ · · · ◦ N ◦ A1

N – Non-linear activation function ; Ak – Affine transformation

100 200 300

130

120

110

100

90

80

70

60

50

40

30

20

10

0

Resistivity [Ωm]

D
ee

p
[m

]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

A1
A2

A3

Fully connected network OutputInput

Water

Oil

11



Deep Neural Networks (Deep Learning) for Inverse Problems

Approximate: I ≈ Iϕ := Ak ◦ N ◦ Ak−1 ◦ · · · ◦ N ◦ A1

Ak – Affine transformation: Ak · x + bk

N – Non-linear activation function:
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Geophysics Synthetic Example: Loss Function

Definitions:

F := Forward operator (Earth properties −− > Measurements)
I := Inverse problem (Measurements −− > Earth properties)
Iϕ∗ := Neural Network approx. of I

Iϕ∗ := arg min
Iϕ,ϕ∈Φ

∑
i

∥(F ◦ Iϕ)(mi) − mi∥

Evaluating F is expensive
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Geophysics Synthetic Example: Loss Function

Definitions:

F := Forward operator (Earth properties −− > Measurements)
I := Inverse problem (Measurements −− > Earth properties)
Iϕ∗ := Neural Network approx. of I
Fθ∗ := Neural Network approx. of F

Two-step based loss function:

Fθ∗ := arg min
θ∈Θ

∑
i

∥Fθ(zi) − F(zi)∥

Iϕ∗ := arg min
ϕ∈Φ

∑
i

∥(Fθ∗ ◦ Iϕ)(mi) − mi∥

Shahriari, M., Pardo, D., Rivera, J. A., Torres-Verd́ın, C., Picon, A., Del Ser, J.,
Ossandón, S., Calo, V. M.: Error control and loss functions for the deep learning
inversion of borehole resistivity measurements. International Journal for Numerical
Methods in Engineering 122(6), 1629–1657 (2021)
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Synthetic Example
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Numerical Results: Two Step based
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Numerical Results with Regularization
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Optimization of measurement system



Design of Measurement Acquisition System

We select measurements following this iterative algorithm:

Train Neural
Network IS

Select new mea-
surements si

that maximize
||Fsi I − Fsi IS ||

Add si (e.g.
geosignal) to the
measurements S

Initial measurements
S (e.g. co-axial)

New measurements
maximize discrep-

ancies between true
and approximated

inverse models

Iterate
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Measurement Tool

Conventional Logging-while-Drilling (LWD)

Tx1,1 Tx1,2

Tx2,1 Tx2,2

Tx3,1 Tx3,2

Rx1 Rx2

0.2032m

0.8128m, 2MHz

1.6256m,0.5MHz

2.4384m,0.25MHz

Deep Azimuthal

Tx1

Tx2

Rx1

Rx2

12m,24kHz

25m,24kHz
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Types of Measurements

Name Measured Component LWD Deep Azimuthal
zz Hzz ✓ ✓

xx Hxx ✓ ✓

yy Hyy ✓ ✓

xxyyzz+ Hxx + Hyy + Hzz ✓ ✓

Geosignal Hzz − Hzx

Hzz + Hzx
✓ ✓

Symmetrized directional Hzz + Hzx

Hzz − Hzx
· Hzz − Hxz

Hzz + Hxz
✓ ✓

Antisymmetrized directional Hzz + Hzx

Hzz − Hzx
· Hzz + Hxz

Hzz − Hxz
✓ ✓

Harmonic resistivity Hxx + Hyy

2 Hzz
✓ ✓

Harmonic anisotropy Hxx

Hyy
✓ ✓
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Iter 0: 30k Samples

ρh ρu du
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Iter 1: 30k Samples

ρh ρu du
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Iter 2: 30k Samples

ρh ρu du
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Iter 3: 30k Samples

ρh ρu du
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Iter 4: 30k Samples

ρh ρu du
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Iter 5: 30k Samples

ρh ρu du
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Iter 5: 300k Samples

ρh ρu du
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Iter 0: 30k Samples

blank

Original:

Inverted:
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Iter 1: 30k Samples
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Original:

Inverted:

21



Iter 2: 30k Samples
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Iter 3: 30k Samples
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Iter 4: 30k Samples
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Iter 5: 30k Samples
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Original:
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Iter 5: 300k Samples
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Original:

Inverted:
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Database generation



Motivation and Objectives

The inversion process requires a massive database that relates multiple Earth
models to borehole resistivity measurements.

We often produce an offline synthetic database using tens of thousands of
simulations by solving the Maxwell’s equations with different Earth models.

The objective is to efficiently generate a massive database for 2.5D borehole
resistivity measurements

We employ refined isogeometric analysis (rIGA) as a high-performance
computational method to perform rapid and accurate simulations.
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Auto ML



Why AutoML?

Architecture design by hand is complex.

It is possible to use a large DNN to achieve high accuracy:
It imposes unnecessary high computational costs while training.

It may cause overfitting.

It requires high memory and processor capabilities during evaluation.

Goal
To find a DNN architecture that delivers an acceptable level of accuracy with a
minimum number of parameters.
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Hyperparameter tuning

Input
Search space of hyperparameters (DNN architectures)
Dataset
Scoring function, e.g., loss function
Stopping criteria, if needed

Output
The optimal hyperparameters (DNN architecture) corresponding to the dataset
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Search space

n : number of blocks
k0, k1: kernel sizes of the
convolutional layers

Forward model: SF = {n = {1, 2, 3, 4}; k0, k1, L = {3, 5, 7}}
L: the kernel size of a final convolutional output layer

Inverse model: SI = {n = {1, 2, 3, 4, 5}; k0, k1 = {3, 5, 7}}
The output layer is dense
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Scoring function

R(h) = H(h) − H(ho)
H(ho)︸ ︷︷ ︸

relative error

− Np(ho) − Np(h)
Np(ho)︸ ︷︷ ︸

relative increase in
the number of unknowns

,

ho: Hyperparameters of a reference model
Np: Number of unknowns
Forward operator: H(hf ) =

∑nv
i=1 ∥Fhf ,α∗(ti , pi) − mi∥

Inverse operator: H(hi) =
∑nv

i=1 ∥Fh∗
f ,α∗ ◦ Ihi ,β∗(ti , mi) − mi∥

nv : Number of validation samples

Tunning optimization problem

h∗ = arg
h∈S

min R(h),
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Tuning results: Bayesian optimization
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parameters
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Inversion results: using original DNN
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Inversion results: using optimal DNN
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Application on Seismic



Surface seismic measurements

In seismic studies, mechanical waves are generated by a source and recorded with
several receivers.

Different processing techniques are required to produce 2D or 3D images of
subsurface properties.

Postprocessing requires high computational and/or user costs that can be
alleviated using machine learning.
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Seismic Application 1

Wavelet stretching is an important
artifact in conventional data processing.
To rectify it, we propose a method that
needs to recognize primary reflected
signals in partially processed recorded
data.
We use deep learning to recongnize the
primaries.
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Seismic Application 1
We design a ResNet architecture and generate 40,000 synthetic training data
samples.

CONV 
(7×7, 1×1, 32),

BN, ReLu

Ave pooling
(1×3, 1×2) CONV

(5×5, 1×2, 16),
BN, ReLu

CONV
(1×1, 1×2, 16),

BN

CONV
(5×5, 1×1, 16),

BN, ReLu

CONV
(5×5, 1×1, 16),

BN

Concatenate

Sigmoid

Ave pooling
(1×2, 1×2) CONV

(5×2, 1×3, 4),
BN, ReLu

CONV
(1×1, 1×3, 1),

BN

CONV
(5×2, 1×1, 4),

BN, ReLu

CONV
(5×2, 1×1, 1),

BN

Add

Sigmoid

Max pooling
(1×2, 1×2)

Output vector

Input image
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Seismic Application 1

Examples of the training data samples, where the input image and the output
vector are shown:
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Seismic Application 1
The DNN output is used in our analytical artifact correction algorithm to make it
fully automatic.

Abedi, M. M., and Pardo, D. (2022). Nonhyperbolic normal moveout stretch
correction with deep learning automation. Geophysics, 87(2), U57-U66..
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Seismic Application 2

We observe gaps in the recorded data due to
difficulties in deployment of several sources or
receivers.
We propose a new self-supervised method called
”multidirectional deep learning” to fill these gaps
(extrapolation).
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Seismic Application 2

CONV (1×4×4, 1×2×2, 32),
 LReLu

Input data cube

TrCONV 
(1×3×3, 1×2×2, 1),

Tanh

+

+

+

TrCONV 
(3×1×3, 2×1×2, 1),

Tanh

TrCONV 
(1×3×3, 1×2×2, 4),

BN, Tanh

TrCONV 
(3×1×3, 2×1×2, 4),

BN, Tanh

+

CONV (3×3×3, 2×2×2, 64),
BN, LReLu

+

Output data cube

Output of the 
horizontal network

Output of the 
vertical network

CONV (1×3×3, 1×2×2, 128),
BN, LReLu

CONV (1×3×3, 1×2×2, 256),
BN, LReLu

CONV (1×3×3, 1×2×2, 512),
BN, LReLu

TrCONV (1×3×3, 1×2×2, 256),
BN, ReLu

TrCONV (1×3×3, 1×2×2, 128),
BN, ReLu

TrCONV (1×3×3, 1×2×2, 32),
BN, ReLu

CONV (4×1×4, 2×1×2, 32),
 LReLu

+

+

+

CONV (3×1×3, 2×1×2, 128),
BN, LReLu

CONV (3×1×3, 2×1×2, 256),
BN, LReLu

CONV (3×1×3, 2×1×2, 512),
BN, LReLu

TrCONV (3×1×1, 2×1×2, 256),
BN, ReLu

TrCONV (3×1×3, 2×1×2, 128),
BN, ReLu

TrCONV (3×1×3, 2×1×2, 32),
BN, ReLu

CONV (3×3×3, 2×2×2, 128),
BN, LReLu

TrCONV (3×3×3, 2×2×2, 64),
BN, ReLu

TrCONV (3×3×3, 2×2×2, 1),
Tanh

We mix two 2D networks (corresponding
to horizontal and vertical slices of data) in
a 3D network.
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Seismic Application 2

Missing shots 1 2 3 4 5 6 7 8
3D U-net 1.1 1.5 1.8 2.1 2.3 2.6 2.9 3.1

2D vertical 1.1 1.5 1.8 2.0 2.3 2.5 2.7 2.9
2D horizontal 1.2 1.5 1.8 2.0 2.3 2.5 2.6 2.8

Multidirectional 0.9 1.1 1.3 1.6 1.7 1.9 2.0 2.2

The proposed method is more accurate
than a conventional 3D U-net.

Mean absolute error of the
test synthetic data. The
values should be multi-
plied by 10−3
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Conclusions and Future Work



Conclusions

Deep Learning (DL) is a promising alternative for solving geophysical inverse
problems.

DL opens the alternative for solving challenging geophysical problems that could
not be solved with traditional methods.

We need efficient DL solvers of Partial Differential Equations (PDEs).
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Call for Ph.D. Students and Postdoctoral Fellows

Nice place... ...good maths!

Contact: dzubiaur@gmail.com

Ph.D. & postdoctoral
fellowships in

Bilbao
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