Ensemble-based decision support system for geosteering NFES Stavanger Monthly Technical Meeting — May 2018

Sergey Alyaev¹,

Reidar Bratvold²,

Erich Suter, Geir Evensen, Xiaodong Luo and Erlend Vefring ¹

¹IRIS

²University of Stavanger

May 7, 2018

Sergey Alyaev (IRIS)

Ensemble-based DSS

What is geosteering?

Geosteering is **the optimal placement (1)** of a wellbore based on the results of **realtime downhole geological and geophysical logging measurements (2)** rather than three-dimensional targets in space.

[Wikipedia]

History of geosteering: realtime EM measurements (2)

First run 1996

Simple correlation work

Deep Azimuthal Resistivity 2006

Proper Pro-active geosteering commences

Extra Deep Azimuthal Res. 2012

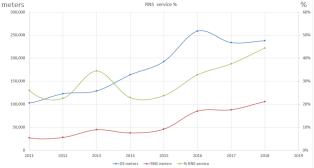
Opens the doors for proper mapping and analyisis

History of geosteering: realtime EM measurements (2)

First run 1996

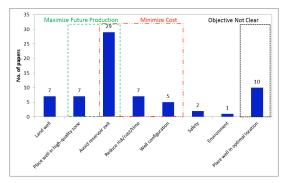
Simple correlation work

Deep Azimuthal Resistivity 2006


Proper Pro-active geosteering commences

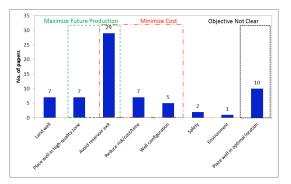
Extra Deep Azimuthal Res. 2012

Opens the doors for proper mapping and analyisis


[Data from Baker Hughes, a GE company]

Sergey Alyaev (IRIS)

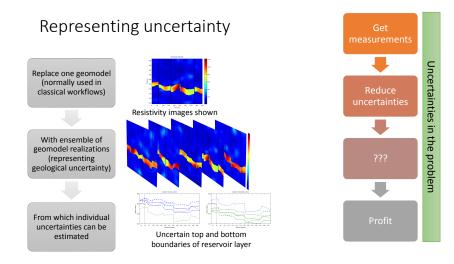
Ensemble-based DSS

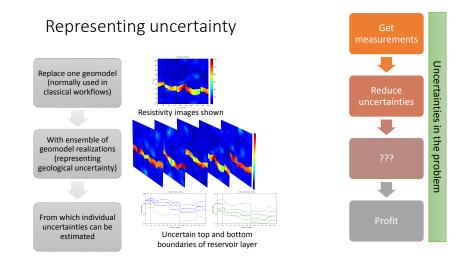

History of geosteering: realtime optimization of well placement (1)

History of geosteering: realtime optimization of well placement (1)

[Kullawan, Bratvold, Bickel (2014) Value...]

History of geosteering: realtime optimization of well placement (1)

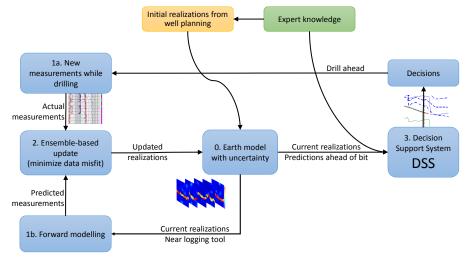

[Kullawan, Bratvold, Bickel (2014) Value...]


Realtime optimization workflows

There is a lack of workflows that focus on **systematic optimization of the well placement decisions** while drilling **including uncertainty**.

Sergey Alyaev (IRIS)

Ensemble-based DSS



Modern reservoir management workflow and expert knowledge* Initial realizations from well planning

[*Hanea (2015). Reservoir management under geological uncertainty] Sergey Alyaev (IRIS) Ensemble-based DSS May 7, 2018 5

Ensemble-based geosteering workflow

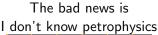
[Update workflow: Luo et.al. (2015). An Ensemble-Based Framework...]

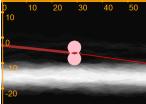
Sergey Alyaev (IRIS)

Ensemble-based DSS

Ensemble-based update

- Provides incremental update to the uncertain model realizations
- Can work with several types of measurements simultaneously
- Works for any measurement for which we can model

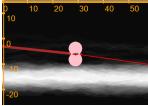

Ensemble-based update


- Provides incremental update to the uncertain model realizations
- Can work with several types of measurements simultaneously
- Works for any measurement for which we can model

The bad news is

Ensemble-based update

- Provides incremental update to the uncertain model realizations
- Can work with several types of measurements simultaneously
- Works for any measurement for which we can model

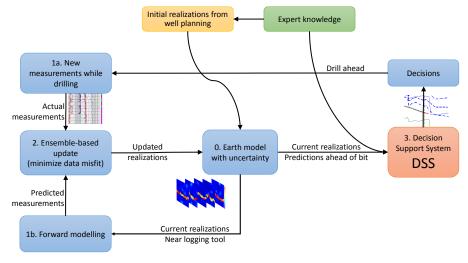

The good news is

DOI of our EM tool

Ensemble-based update

- Provides incremental update to the uncertain model realizations
- Can work with several types of measurements simultaneously
- Works for any measurement for which we can model

The bad news is I don't know petrophysics


DOI of our EM tool

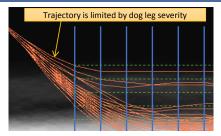
The good news is I know a petrophysicst

hope to meet more today

Ensemble-based geosteering workflow

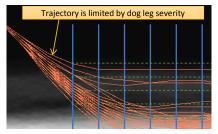
[Update workflow: Luo et.al. (2015). An Ensemble-Based Framework...]

Sergey Alyaev (IRIS)


Ensemble-based DSS

What a DSS can do better than a human?

What a DSS can do better than a human?


- Realtime performance
- Ability to handle multiple objectives and constraints
- Robust optimization
- Optimality of the decision
 - Optimization of full trajectory ahead of bit
 - Optimality for all objective functions

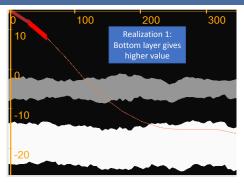
Algorithm and assumptions

Discretization of trajectories

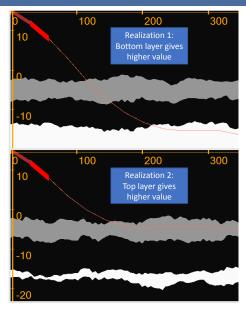
Algorithm and assumptions

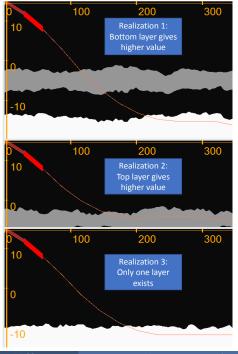
Discretization of trajectories

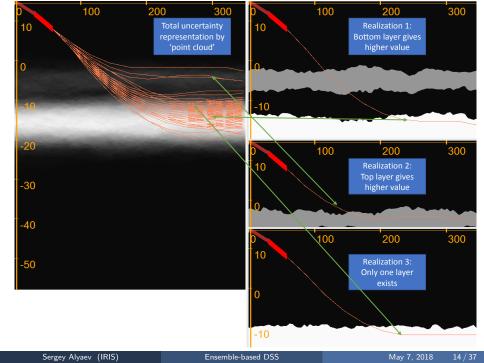
DSS algorithm: Dynamic Programming


- Ind full best trajectory for every realization and corresponding value
- ② Take best decision for the next segment
 - Consider allowed alternatives (continue/steer/stop)
 - Choose best predicted value on average
- Ise new measurements to reduce uncertainty via update loop

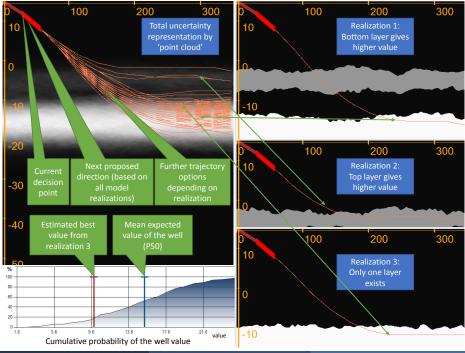
[Inspiration: Kullawan, Bratvold, Bickel (2018). Sequential...]


Sergey Alyaev (IRIS)


Ensemble-based DSS


A realizations and its optimal trajectory




Realizations and optimal trajectories...

Sergey Alyaev (IRIS)

May 7, 2018 16 / 37

- Find full best trajectory for every realization and corresponding value
- ② Take best decision for the next segment
 - Consider allowed alternatives (continue/steer/stop)
 - Choose best predicted value on average

③ Use new measurements to reduce uncertainty via update loop

- Find full best trajectory for every realization and corresponding value
- ② Take best decision for the next segment
 - Consider allowed alternatives (continue/steer/stop)
 - Choose best predicted value on average

③ Use new measurements to reduce uncertainty via update loop

 \checkmark Robust optimization based on the full ensemble

- Find full best trajectory for every realization and corresponding value
- ② Take best decision for the next segment
 - Consider allowed alternatives (continue/steer/stop)
 - Choose best predicted value on average

③ Use new measurements to reduce uncertainty via update loop

- \checkmark Robust optimization based on the full ensemble
- $\sqrt{}$ Optimality of the decision in the discrete sense

- Find full best trajectory for every realization and corresponding value
- ② Take best decision for the next segment
 - Consider allowed alternatives (continue/steer/stop)
 - Choose best predicted value on average

③ Use new measurements to reduce uncertainty via update loop

- \checkmark Robust optimization based on the full ensemble
- $\sqrt{}$ Optimality of the decision in the discrete sense
- \checkmark Ability to handle multiple objectives and constraints

- Find full best trajectory for every realization and corresponding value
- ② Take best decision for the next segment
 - Consider allowed alternatives (continue/steer/stop)
 - Choose best predicted value on average

③ Use new measurements to reduce uncertainty via update loop

- \checkmark Robust optimization based on the full ensemble
- \checkmark Optimality of the decision in the discrete sense
- \checkmark Ability to handle multiple objectives and constraints
- * Realtime performance

 $\sqrt{}$ - by construction.

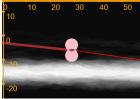
Value function measured in "equivalent meters of reservoir":

- reservoir thickness when drilling in the reservoir
- the value is doubled in the 'sweet spot' between 0.75 and 2.25 meters from the reservoir top
- a pre-set cost per meter of well.

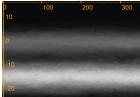
Constraints:

- Max dogleg severity 2 deg.
- Max inclination 90 deg from vertical.

Example 1: optimal landing — setup

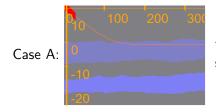

Value function measured in "equivalent meters of reservoir":

- reservoir thickness when drilling in the reservoir
- the value is doubled in the 'sweet spot' between 0.75 and 2.25 meters from the reservoir top
- a pre-set cost per meter of well.


Constraints:

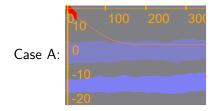
- Max dogleg severity 2 deg.
- Max inclination 90 deg from vertical.

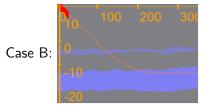
DOI of our EM tool


Initial Ensemble:

Expected: 2 reservoir layers and background shales uncertain boundaries

Example 1: optimal landing

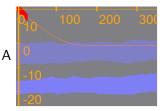

Synthetic truth

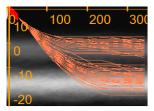

The truth that is statistically expected

Example 1: optimal landing

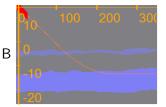
Synthetic truth

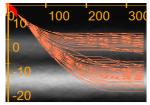
The truth that is statistically expected



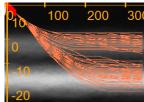

Truth with a degenerate top layer that differs from expectation

Example 1: optimal landing — two scenarios


Synthetic truth

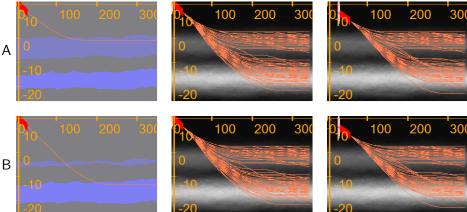


Expect two layers of good sands



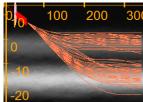
Expect two layers of good sands

Identical setup

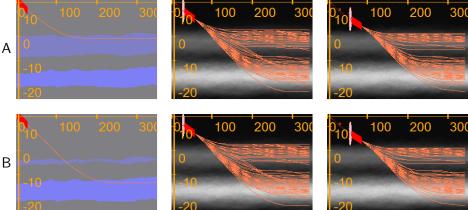

Example 1: optimal landing — two scenarios

Synthetic truth

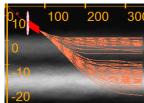
Step 0


Step 1

Identical setup


No update

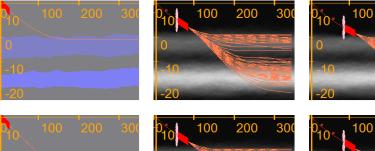
Synthetic truth


Step 1

Step 2

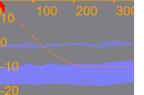
No update

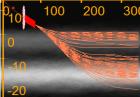
Synthetic truth

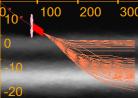


Step 2

Step 3

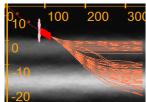

200

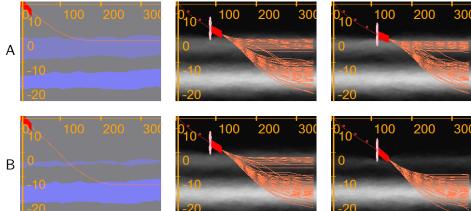

300



В

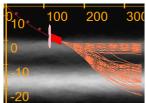
А



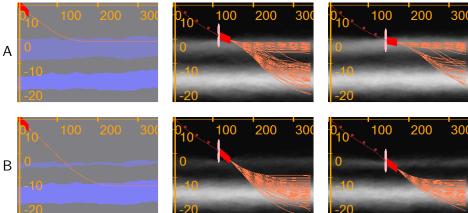

Look-around touches expected boundary

Synthetic truth

Step 3

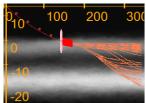

Step 4

Look-around touches expected boundary

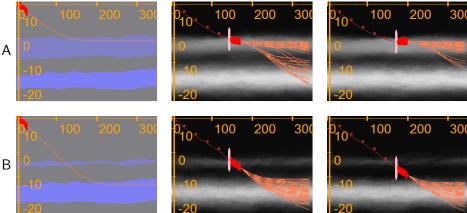

No expected top in B

Synthetic truth

Step 4

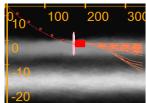

Step 5

In A bottom layer seems better for some realizations

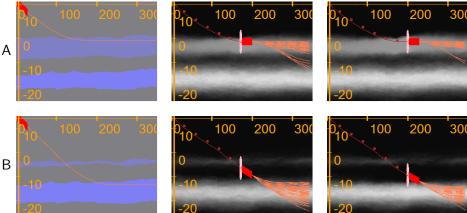

No expected top in B

Synthetic truth

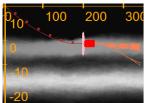
Step 5


Step 6

In A bottom layer seems better for some realizations

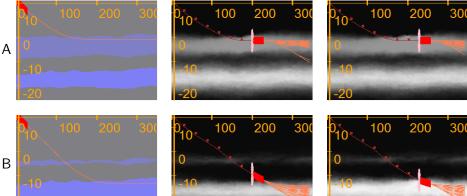

Ensemble-based DSS

Synthetic truth



Step 6

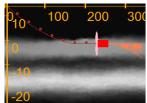
Step 7



Synthetic truth

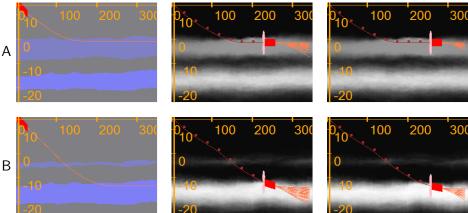
Step 7

Step 8



All realizations follow 'correct' layer

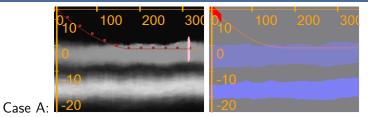
-20


-20

Synthetic truth

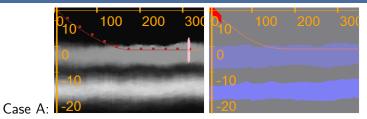
Step 8

Step 9

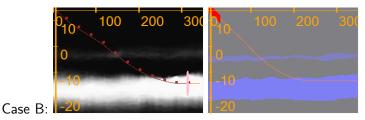


All realizations follow 'correct' layer

Final stage


-20

Example 1: Final state



• The well matches the perfect trajectory

Example 1: Final state

• The well matches the perfect trajectory

- The well is landed in optimal layer
- The landing is not perfect due to initial uncertainty

Sergey Alyaev (IRIS)

Ensemble-based DSS

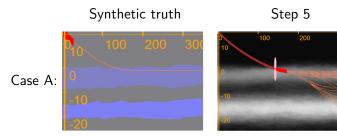
Example 2: Interactive DSS interface

		Current Propose		80.0 80.1							
Objectives weights											
Per stand cost	0.3	*									
Exit penalty	0.0	×									
Steering Cost	0.0	×									
Sand quality value	0.0	*									
Position value	1.0		🔳 Aim E	ottom	1.5		m				
Going up penalty	0.0										
Constraints											
Max dogleg, deg.	2.6	*									
Drilling up	Allowe	bd									

Figure: Elements of GUI

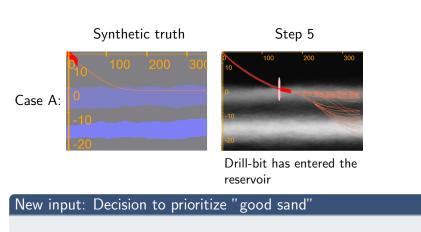
Example 2: Interactive DSS interface

		Current Propose		80.0 80.1			
Objectives we	eights						
Per stand cost	0.3	* *					
Exit penalty	0.0						
Steering Cost	0.0						
Sand quality value	0.0						
Position value	1.0		🔳 Aim E	ottom	1.5	* *	m
Going up penalty	0.0	*					
Constraints							
Max dogleg, deg.	2.6	*					
Drilling up	Allowe	d					

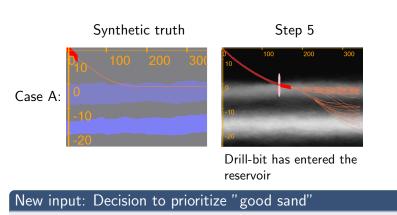

Figure: Elements of GUI

Performance

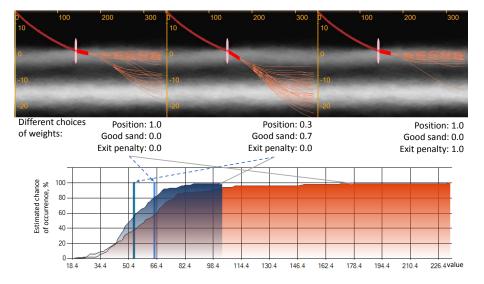
- Incremental model update: 5 seconds
- Recomputation of optimal trajectories: 10 seconds


Sergey Alyaev (IRIS)

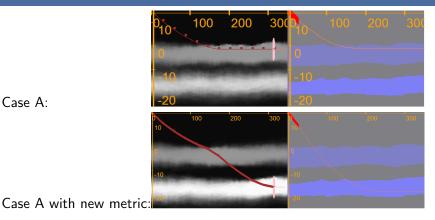
Ensemble-based DSS


Drill-bit has entered the reservoir

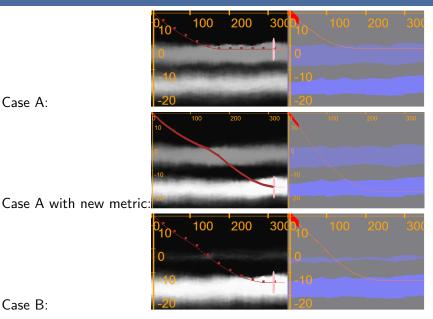
300

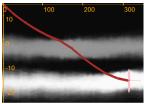

Sergey Alyaev (IRIS)

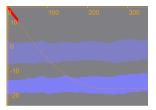
Ensemble-based DSS

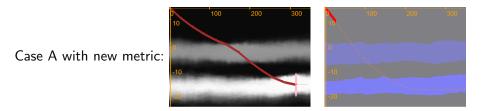


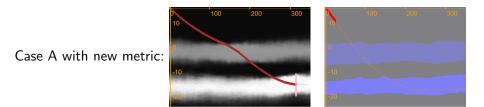
- Recomputation of optimal trajectories: 10 seconds
- Preview of outcomes: instant

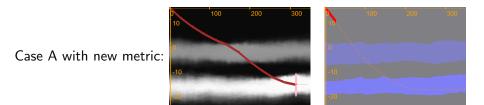

Example 2: Adjusting objectives due to insights


Example 2: Adjusting objectives — Outcome




Example 2: Adjusting objectives — Outcome


Case A with new metric:



• The well is diverted to 'new optimal' layer following user input

- The well is diverted to 'new optimal' layer following user input
- The new decisions are optimal with respect to new objective

- The well is diverted to 'new optimal' layer following user input
- The new decisions are optimal with respect to new objective
- Providing the correct objective before operation would improve outcomes

Conclusions

• Ensemble-based update workflow

- Ensemble-based update workflow
- Real-time Decision Support System
 - Builds on existing tools
 - Considers full trajectory ahead of drill-bit
 - For each updated realization

- Ensemble-based update workflow
- Real-time Decision Support System
 - Builds on existing tools
 - Considers full trajectory ahead of drill-bit
 - For each updated realization
 - \implies yielding consistently good decisions

- Ensemble-based update workflow
- Real-time Decision Support System
 - Builds on existing tools
 - Considers full trajectory ahead of drill-bit
 - For each updated realization
 - \implies yielding consistently good decisions
- Flexible implementation with intuitive controls and real-time preview of outcomes

- Ensemble-based update workflow
- Real-time Decision Support System
 - Builds on existing tools
 - Considers full trajectory ahead of drill-bit
 - For each updated realization
 - \implies yielding consistently good decisions
- Flexible implementation with intuitive controls and real-time preview of outcomes

[Our paper: Alyaev et.al. (2018). An Interactive Decision Support...]

Acknowledgments

The work was performed as part of the research project 'Geosteering for improved oil recovery' (NFR-Petromaks2 project no. 268122) supported by the Research Council of Norway, ENI Norge, Statoil and Baker Hughes Norway.

[Our paper: Alyaev et.al. (2018). An Interactive Decision Support...]