

Geosteering in Conventional Reservoirs: what can we learn from US unconventional experience?

Igor Kuvaev CTO ROGII

ROGII Overview

Customized software solutions for Upstream Oil & Gas

Team

Over 100 geoscientists, mathematicians, in-house software engineers

Clients

- 300+ clients in over 10 countries: Oil & Gas, Service Companies
- **3000** + multi disciplinary users (geology, drilling, completions, data analytics)
- Conventional/Unconventional projects

Company

- Founded in 2013
- Innovative spirit, unique know how, bulletproof stability
- Core belief that data should be integrated

United States | Canada | Argentina | Australia | China | Mexico | Qatar | UAE

Solo DTM

W StarFrac

TOTAL

Difficulties of Conventional vs. Unconventional Geosteering

Conventional

•

- Laterally discontinuous reservoirs, channels, lenses
- "Complex Channel Sands"

Unconventional

- "Drill cheaper and faster!"
- Bare bone downhole tools
- **Ever increasing ROP**
- Spotty/dirty data
- Real-time well adjustments made in seconds to minutes
- Downhole data measures directly adjacent bedrock

400

Lower Frasier River, BC, Canada - possible analogue for McMurray Fm.

Brief History of Unconventional North America Wells

- 2005 to 2010 Development of Barnette and Marcellus
 - 45 days per well, full suite of tools (triple combo)
- Data analyzed in general geoscience solution, Excel, sometimes even paper print outs
- 2010s Full scale development of Bakken, Eagle Ford, Permian and more ...
 - "We need you to drill these wells faster with less downhole tools!"
- Operators forced to increase ROI reduce drilling days and slim down MWD tools
- New reservoir complexities:

٠

- Changing facies, discontinuous reservoirs, debris flows, highly faulted/structured
- New drilling evolution required new methods to process and analyze data more effectively

Lower Eagle Ford Outcrop

Early Geosteering Approach: Model-Based

- Method: Compare synthetic log to actual measured data, adjust bed model to fit
- Assumes continuous formation with typewell log signature
- Synthetic log based on low resolution typelog

ROGII

Early Geosteering Approach: Model-Based

- Difficult to determine highest confidence bed model interpretation

•

RO

Modern Geosteering Approach: Stratigraphy-Based

- Method: Compare acquired data directly back to typelog in True Vertical Thickness (TVT) scale 1
- Possible to identify lateral reservoir changes ("steering on itself") ۲
- Higher confidence interpreted bed models due to high resolution correlation

Modern Geosteering Approach: Stratigraphy-Based

Strat-based geosteering: The lateral GR data can be verticalized and correlated on itself

Modern Geosteering Approach: Stratigraphy-Based

Bakken

Pseudo-typewell can be created from verticalized lateral GR data

Geosteering in data-rich environment

Conventional geosteering challenge

Conventional geosteering challenge

Poor GR correlation, propagation resistivity is needed

Resistivity Data – Why?

- Not enough GR contrast in target
- Conventional Heavy oil Carbonates

۲

•

 \bullet

- Ability to calculate distance to boundary
- Resistivity interpretation technique is different from GR

Multilayer Stochastic Inversion in 🙀 StarSteer

Schlumberger Peiscope HD tool (azimuthal resistivity), clastic reservoir, Australia

Mikhail Sviridov, Anton Mosin, Sergey Lebedev, ROGII Inc. and Ron Thompson, Beach Energy Limited

2 types of tools: propagation and azimuthal

- Most tools are propagation resistivity (omnidirectional)
- Additional geological constraints are needed for inversion

2 Layer deterministic inversion

Schlumberger ARC tool (propagation resistivity), clastic reservoir, Australia

The lateral GR data can be verticalized and correlated on itself No correlation with typewell GR

Distance to the boundary, propagation resistivity tool (MPR from BakerHughes)

2-layer deterministic inversion

Deterministic inversion is constrained by geosteering model obtained from Strat-based geosteering

Vertical

profile

resistivity

Distance to the boundary, propagation resistivity tool (WPR from APS)

Multilayer Stochastic Inversion in 🙀 StarSteer

Schlumberger Peiscope tool (azimuthal resistivity), clastic laterally discontinuous reservoir

Thank you!

