

Schlumberger

BR PETROBRAS

Carbonate Petrophysics in Wells Drilled with Oil Base Mud

Vinicius Machado, Paulo Frederico, Paulo Netto, Petrobras Rodrigo Bagueira, Fluminense Federal University Andre Souza, Elmar Junk, Lukasz Zielinski, Austin Boyd, Schlumberger

Brazilian Pre-Salt Carbonates

2 Km Water Depth, 2 Km Salt : (Oil Base Mud) 200 Km Offshore Pre-Salt Carbonates : 18,000 ft TVD Oil 28-30 Api, GOR 1350 scf/brl

Formigli, 2007

Pre-Salt Carbonates

- Microbial, Stromatalites
- Complex Lithology

 Calcite, Dolomite, Quartz
 - NMR Porosity PHIT
- Variable Permeability
 4 decade range
- Oil Wet
 - Very High Resistivity
 - Sw?
 - Swirr from NMR Bound Fluid

Formigli, 2007

Dunham Classification for Carbonates

Contains mud (particles of clay and fine silt size)			Lacks Mud	Original components bound together at deposition. Intergrown skeletal material, lamination contrary to
Mud-supported		Grain-supported		
Less than 10% Grains	More than 10% Grains			floored by sediment, roofed over by organic material but too large to be interstices
Mudstone	Wackestone	Packstone	Grainstone	Boundstone

C. G. St. C. Kendall, 2005 (after Dunham, 1962, AAPG Memoir 1)

Carbonate Classifications by Pore Size and/or Grain Size

- Archie-1952 (grain size / cuttings)
- Choquette and Pray 1970 (micro-meso-mega)
- Pittman 1971 (micro-macro)
- Marzouk 1995 (micro-meso-macro)
- Lucia 1967, 1983, 1995 (grain size & vugs)
- Ramakrishnan 1997-2001 (micro-macro-vugs)
- Cantrell & Hagerty 1999 (micro-macro)
- Clerke 2007 (micro I, II, III & macro)

Archie 1952

- Matrix Type
 - I (Crystalline)
 - II (Chalky)
 - III (Granular / Sucrosic)
- Grain Size (mm)
 - V.Fine (0.05), Fine (0.1),
 - Med. (0.2), Coarse (0.4)
- Visible Pore Size (x10 microscope)
- Primary Class A (less than 0.01mm, not visible)

- Туре II Туре 🖬 Туре I (ATMOS.) 25 20 15 10 PERCENT BULK VOLUME OCCUPIED BY MERCURY
- Class B (0.01-0.1mm) [']— Class C (greater than 0.1mm but less than grain size)
 - Class D (greater than grain size vug)

Designed for field geologist looking at cuttings. Made initial correlation between rock-type and Swirr.

Choquette and Pray, 1970

- Micropores <1/16mm
- Mesopores 1/16-4mm
 - Small
 - Large
- Megapores 4-256mm
 - Small
 - Large

15 Porosity Types

Core & Outcrop Description

Pittman 1971

- Micropores
 - occur between calcite crystals
 - Less than 1 micron diameter
 - Visible with SEM
 - Impact on high SWIRR
- Macropores
 - Visible in thin sections
 - Greater than 30 microns
 - Can be inter-granular or intra-granular

Marzouk 1995: micro-meso-macro pores

Micrite (Calcite Crystal) 1-2 um in length

Micrite Particle, clump of calcite crystals, 10-20 um in diameter

Carbonate Grain, > 200 um, composed of micrite crystals

Micritic Carbonate Porosity

Micrite Particles 10-20um

Micrite Grains > 200um

Based on Pore Throat Radius from Mercury Porosimetery

Marzouk et al SPE 49475

Porosity Partitioning & Dunham

Marzouk et al SPE 49475

NMR T2 & Mercury Porosimetry

Sample 1 30 p.u. 97 md.

Sample 2 18 p.u. 2 md.

10/3/2012

Carbonate Classifications by Pore Size and/or Grain Size

- Archie-1952 (grain size / cuttings)
- Choquette and Pray 1970 (micro-meso-mega)
- Pittman 1971 (micro-macro)
- Marzouk 1995 (micro-meso-macro)
- Lucia 1967, 1983, 1995 (grain size & vugs)
- Ramakrishnan 1997-2001 (micro-macro-vugs)
- Cantrell & Hagerty 1999 (micro-macro)
- Clerke 2007 (micro-macro)

Lucia 1967,1983,1995

- Interparticle
 - Fine/Class 3
 - (< 20um, Pd > 70psi)
 - Medium/Class 2
 - (20-100um, Pd 15-70psi)
 - Large/Class 1
 - (> 100um, Pd<15psi)
- Vuggy
 - Separate Vugs
 - Touching Vugs

Grain Size & Permeability Prediction (No distinction between intercrsytal & interparticle)

Lucia 1995

Lucia 1995

Lucia 1995

Ramakrishnan

- Micro
 - Intragranular
- Macro
 - Intergranular
- Vugs
 Absent grain

Bruggeman....
$$k_{eff} = \frac{k_{matrix}}{1-3f_v}$$

(assumes $k_{vug} = \infty$)

Cantrell & Haggerty

- Micro Porosity Types
 - Microporous Grains
 - Microporous Matrix
 - Microporous Cements
- Mechanisms
 - Leaching
 - Crystal growth
 - Boring of grains
- Macro Porosity
 - Visible (>10 microns)

Clerke Pore Type from Mercury

- Macro Porosity
 260 microns
- Micro I (Intra-Granular)
 1 micron
- Micro II (Micritic)
 0.1 micron
- Micro III (Micritic)
 Sub 0.1 micron

Carbonate Petrophysical Classifications

- Grain Size
 - Archie, Lucia
- Pore Size
 - Choquette & Pray, Pittman, Ramakrishnan
- Pore Throat Size
 - Marzouk, Hassall, Ramamoorthy, Clerke

Pore Size from T₂

$$\frac{1}{T_2} = \frac{1}{T_{2B}} + \rho \frac{c}{r} \qquad \dots Eq \, 1^*$$

Where c= 3 for spherical pores = 2 for cylindrical pores = 1 for planar pores

* Looyestijn, 2004

Carbonate Petrophysical Workflow

- Ramamoorthy et al, SPWLA 2008
 - Lithology & Porosity
 - Pore System & Permeability (2 transforms)
 - Saturation & Relative Permeability
- Designed for Water Base Mud
- Oil Base Muds?

$$K_{SDR} = A \phi^C (\rho T_{2lm})^B$$

$$K_{MACRO} = A \phi^{C} \left(\frac{V_{MACRO}}{\phi - V_{MACRO}} \right)^{B}$$

Where

 K_{SDR} = permeability (mD)

A = pre-multiplier

 Φ = porosity fraction (pu)

C = porosity exponent

 ρ = surface relaxivity (microns/second) T_{2lm} = log mean of T_2 distribution (secs) B = exponent

Pore System & Permeability

Carbonate Porosity Partitioning from Logs

Pore Size from NMR T₂

- No diffusion on long T₂
 - Short Echo Spacing
 - or low gradient
- $T_{2B} > 1$ second
 - Water, OBMF, Light Reservoir Oils
- No diffusive coupling
 - Oil wet helps
- Pore fluids wetting the grains
 - Water in micro pores
 - Oil/OBMF in meso & micro pores

Where c = 3 for spherical pores

- = 2 for cylindrical pores
- = 1 for planar pores

T₂ versus Pore Size: Effect of T₂ bulk

Permeability and Macro Porosity

T_{2bulk} of Oil Base Mud Filtrate

Petrobras Research (CENPES) Brazilian Universities Lab NMR: UFF, USP, UFES, UFRJ, ON

Pre-Salt Carbonate Core: Lab NMR

Effect of Surface Relaxivity (ρ)

Wettability & Pore Size

Effect of Surface Relaxivity and Bulk T₂

Lab – Log Comparsion of Pre-Salt Core

Carbonate Porosity Partitioning

Electrical and Acoustic Images in Vuggy Carbonate

Under Evaluation: Vugs from Electrical Images & Acoustic Images in OBM

Summary: Carbonate OBM Petrophysics

- Porosity & Lithology
 - NMR Porosity helpful with complex mineralogy
- Porosity Partitioning & Permeability
 - Oil Wet and Light Oil
 - K_{SDR} for Micro-Meso Porosity
 - K_{MACRO} when Macro Porosity > cut-off
- Saturation
 - Swirr from NMR

References

1) Classification of Carbonate Reservoir Rocks and Petrophysical Considerations, G.E. Archie, AAPG 1952

2) Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates, CHOQUETTE and PRAY, AAPG 1970

3) Microporosity in Carbonate Rocks, Edward Pittman, AAPG 1971

4) New Classification of Carbonate Rocks for Reservoir Characterization, I. Marzouk, SPE 49475, 1995

5) Rock-Fabric/Petrophysical Classification of Carbonate Pore Space for Reservoir Characterization, F. Jerry Lucia AAPG 1995

6) A Model-Based Interpretation Methodology for Evaluating Carbonate Reservoirs, T. S. Ramakrishnan, SPE 71704, 2001

7) Microporosity in Arab Formation Carbonates, Saudi Arabia, Cantrell & Hagerty, GeoArabia, Vol. 4, No. 2, 1999

8) Permeability, Relative Permeability, Microscopic Displacement Efficiency, and Pore Geometry of M-1 Bimodal Pore Systems in Arab D Limestone, Edward Clerke, SPE 10529, 2009