Lateral-Motion Correction of NMR Logging-While-Drilling Data (SPWLA-2018-LLL)

Radu Coman, Holger Thern, and Tobias Kischkat

<u>radu.coman@bakerhughes.com</u>

Outlook

- NMR motion effect \rightarrow NMR flow effect
 - ROP motion flow effect
 - Lateral-motion flow effect
- Lateral-motion correction
- Data examples

NMR MOTION EFFECT

MagTrak[™] Tool & B₀ Field

Coman et al., 2015, SPE175050

120

NFES - Norwegian Formation Evaluation Society

- M X

CPMG Pulse Sequence

https://en.wikipedia.org/wiki/Spin_echo

120

NFES - Norwegian Formation Evaluation Society

-5 16 51

Sensitive Volume & Contribution Map

ROP - Interaction Volumes Without Motion

Coman et al., 2015, SPE175050

Flow Effect

Coman et al., 2015, SPE175050

Flow Effect

- Outflow effect
 - w/o refocusing pulse
- Inflow effect
 - w/o tipping pulse
- Dephasing effect
 - cummulative effect of imperfect refocusing
 - relative motion hydrogen atom / NMR tool
 - similar to the NMR diffusion effect
 - $\sim ROP * (G * TE)^2$

Flow Effect

Coman et al., 2015, SPE175050

(B)

Lateral Motion Top View on the Excited Region in NMR Antenna Plane

Top View on the Sensitive Region (Without Motion)

Lateral Motion 15mm

Amplitude of the echo is ~ contributing volume

Lateral Motion 3.5mm

The "dephasing effect" is further reducing the echo amplitude

Simulation Results

NFES - Norwegian Formation Evaluation Society

-5 M6 5

Lateral-Motion Flow Effect

$$f(t) = 1 - A_{exp} \left(1 - e^{-\frac{t}{T_{exp}}} \right) - A_{cos} \left(1 - \cos \left(2\pi \frac{t}{T_{cos}} \right) \right)$$

• $A_{exp} \sim$ lateral motion distance

1200

- A_{cos} affects < 5% of porosity
- $T_{cos} \approx 1/\text{RPM}$

•
$$T_{exp} \approx 0.35 \cdot T_{cos}$$

Lateral-Motion Flow Effect

$$T_2 = 2$$
 seconds

$T_2 = 0.2$ seconds

1.000

Effect of Lateral Motion on T2 Distribution (without correction)

NFES - Norwegian Formation Evaluation Society

-5 M SI

NMR MOTION CORRECTION

Joint Inversion JI (Dunn et al., 1998)

- Linear inversion

- σ is the ratio of the regular measurement error of the echo train and the regular measurement error of the trainlet

•
$$k_{ij} = (1 - e^{-TW_{ET}/r_j})e^{-iTE_{ET}/T_j}$$

•
$$l_{ij} = (1 - e^{-TW_{Tr}/r_j})e^{-iTE_{Tr}/T_j}$$

Expanded Joint Inversion (EJI)

$$b_{i} = f(iTE, A_{exp}, T_{exp}, A_{cos}, T_{cos}) \sum_{j=1}^{m} \phi_{j} e^{\frac{-iTE}{T_{j}}} \left(1 - e^{\frac{-TW}{T_{j}T_{j}}}\right)$$

- Non-linear inversion
- The global inversion
 - $A_{exp}, T_{exp}, A_{cos}, T_{cos}, r_{BVI}, r_{BVM}$
 - Non-linear system \rightarrow Levenberg–Marquardt optimization algorithm
- The level-by-level inversion
 - Provides the partial porosities, ϕ_i , of the T_2 distribution

DATA EXAMPLES

Summary

- Lateral motion of NMR tool → lateral-motion flow effect
- Lateral-motion flow effect:
 - Barely change the NMR total porosity
 - Might change the T_2 distribution
 - Can be described by a four-parametric function
- Motion parameters are **extracted from NMR data**
- Extraction by **expanded joint inversion (EJI)**
- EJI improves the T_2 distribution
 - Bound & movable fluids
 - Permeability
 - Saturation
 - Oil viscosity

